References |
- Allegrini, J., Orehounig, K., Mavromatidis, G., Ruesch, F., Dorer, V. & Evins, R. (2015) A review of modelling approaches and tools for the simulation of district-scale energy systems. Renewable and Sustainable Energy Reviews 52, pp. 1391–1404, doi: 10.1016/j.rser.2015.07.123.
- Ancona, M.A., Branchini, L., De Lorenzi, A., De Pascale, A., Gambarotta, A., Melino, F. & Morini, M. (2019) Application of different modeling approaches to a district heating network. AIP Conference Proceedings 2191(1), 020009, doi: 10.1063/1.5138742.
- Babiarz, B. & Kut, P. (2018) District heating simulation in the aspect of heat supply safety. E3S Web of Conferences 45, INFRAEKO 2018, doi: 10.1051/e3sconf/20184500005.
- Guelpa, E. & Verda, V. (2019) Compact physical model for simulation of thermal networks. Energy 175, pp. 998–1008, doi: 10.1016/j.energy.2019.03.064.
- Hermansson, K., Kos C., Starfelt, F., Kyprianidis, K., Lindberg, C.-F. & Zimmerman, N. (2018) An Automated Approach to Building and Simulating Dynamic District Heating Networks. IFAC-PapersOnLine 51(2), pp. 855– 860, doi: 10.1016/j.ifacol.2018.04.021.
- Lund, H., Østergaard, P.A., Nielsen, T.B., Werner, S., Thorsen, J.E., Gudmundsson, O., Arabkoohsar, A. & Mathiesen, B.V. (2021) Perspectives on fourth and fifth generation district heating. Energy 227(C), 120520, doi: 10.1016/j.energy.2021.120520.
- Rak, A. (2017) Selected aspects of hydraulic issues in heating systems. Production Engineering Archives 14(14), pp. 27–32, doi: 10.30657/pea.2017.14.07.
- Schneider Electric (2012) Termis. District Energy Management. User Guide. Available from: https://www.se.com/il/ en/download/document/Termis+Set+Up+Guide/ [Accessed: March 29, 2023].
- Schweiger, G., Runvik, H., Magnusson, F., Larsson, P.O. & Velut, S. (2017) Framework for dynamic optimization of district heating systems using Optimica Compiler Toolkit. Proceedings of the 12th International Modelica Conference, Prague, pp. 131–139, doi: 10.3384/ecp17132131.
- Simonsson, J., Atta, K.T., Schweiger, G. & Birk, W. (2021) Experiences from City-Scale Simulation of Thermal Grids. Resources 10(2), 10, doi: 10.3390/resources100 20010.
- van der Heijde, B., Aertgeerts, A. & Helsen, L. (2017) Modelling steady-state thermal behaviour of double thermal network pipes. International Journal of Thermal Sciences 117, pp. 316–327, doi: 10.1016/j.ijthermalsci.2017.03.026.
- Vandermeulen, A., van der Heijde, B. & Helsen, L. (2018) Controlling district heating and cooling networks to unlock flexibility: A review. Energy 151, pp. 103–115, doi: 10.1016/j.energy.2018.03.034.
- Wang, N., You, S., Zheng, W., Zhang, H., Zheng, X. & Ye, T. (2017) A Simple Thermal Dynamics Model and Parameter Identification of District Heating Network. Procedia Engineering 205, pp. 329–336, doi: 10.1016/j.proeng. 2017.09.988.
- Werner, S. (2017) International review of district heating and cooling. Energy 137, pp. 617–631, doi: 10.1016/j.energy. 2017.04.045.
- Wrzalik, A. (2019) Innovative Solutions in the Process of Heat Supply. QPI 1(1), pp. 155–161, doi: 10.2478/cqpi2019-0021.
- Zimmerman, N., Kyprianidis, K. & Lindberg, C.-F. (2019) A Achieving Lower District Heating Network Temperatures Using Feed-Forward MPC. Materials 12(15), 2465, doi: 10.3390/ma12152465.
|