References |
- Aliiev, I., Aliieva, L., Grudkina, N. & Zhbankov I. (2011) Prediction of the Variation of the Form in the Processes of Extrusion. Metallurgical and Mining Industry 3, 7, pp. 17–22.
- Amborn, P., Frielingsdorf, H., Ghosh, S.K. & Greulich, K. (1995) Modern side-shafts for passenger cars: manufacturing processes I. Journal of Material Processing Technology 48, 1–4, pp. 13–24.
- Ayer, Ö. (2017) Simulation of helical gear forming of AZ31 magnesium material. Advances in Science and Technology. Research Journal 11, 2, pp. 187–191.
- Ayer, Ö., Bingöl, S. & Karakaya, İ. (2019) An extrusion simulation of an aluminum profile by porthole die. Vibroengineering PROCEDIA 27, pp. 139–144.
- Bartnicki, J. & Pater, Z. (2005) Walcowanie poprzeczno- -klinowe wyrobów drążonych. Lublin: Wydawnictwo Politechniki Lubelskiej.
- Chen, S., Qin, Y., Chen, J.G. & Choy, C.-M. (2018) A forging method for reducing process steps in the forming of automotive fasteners. International Journal of Mechanical Sciences 137, pp. 1–14.
- Chen, S., Qin, Y., Choy, C.-M. & Chen J.G. (2017) Testing an Injection Forging Process for the Production of Automotive Fasteners. Procedia Engineering 207, pp. 508–513.
- Colla, D., Petersen, S.B., Rodrigues, J.M.C. & Martins P.A.F. (1995) Towards Industrial Application of Injection Forging of Tubes. Conference: XV SENAFOR At Porto Alegre, Brazil, October, pp. 1–9.
- Gontarz, A., Drozdowski, K., Dziubińska, A. & Winiarski, G. (2018) A study of a new screw press forging process for producing aircraft drop forgings made of magnesium alloy AZ61A. Aircraft Engineering and Aerospace Technology 90(3), pp. 559–565.
- Gontarz, A., Pater, Z. & Tofil, A. (2011) Numerical Analysis of Unconventional Forging Process of Hollowed Shaft from Ti-6Al-4V Alloy. Journal of Shanghai Jiaotong University (Science) 16(2), pp. 157–161.
- Hu, X.L. & Wang, Z.R (2004) Numerical simulation and experimental study on the multi-step upsetting of a thick and wide flange on the end of a pipe. Journal of Materials Processing Technology 151, 1–3, pp. 321–327.
- Ji, H., Liu, J., Wang, B., Fu, X., Xiao, W. & Hu, Z. (2017) A new method for manufacturing hollow valves via cross wedge rolling and forging: Numerical analysis and experiment validation. Journal of Materials Processing Technology 240, pp. 1–11.
- Kılıçaslan, C. & İnce, U. (2016) Failure analysis of cold forged 37Cr4 alloy M10x28 bolts. Engineering Failure Analysis 70, pp. 177–187.
- MacCormack, C. & Monaghan, J. (2002) 2D and 3D finite element analysis of a three stage forging sequence. Journal of Materials Processing Technology 127, 1, pp. 48–56.
- Neugebauer, R., Glass, R., Kolbe, M. & Hoffmann, M. (2002) Optimisation of processing routes for cross rolling and spin extrusion. Journal of Materials Processing Technology 125–126, 9, pp. 856–862.
- Pang, H., Lowrie, J. & Ngaile, G. (2017) Development of a Non-isothermal Forging Process for Hollow Axle Shafts. Procedia Engineering 207, pp. 454–459.
- Pang, H. & Ngaile G. (2019) Development of a non-isothermal forging process for hollow power transmission shafts. Journal of Manufacturing Processes 47, pp. 22–31.
- Park, C., Lim, J.-Y. & Hwang B.-B. (1998) A process-sequence design of an axle-housing by cold extrusion using thick-walled pipe. Journal of Materials Processing Technology 75, 1–3, pp. 33–44.
- Pater, Z. (2009) Walcowanie poprzeczno-klinowe. Lublin: Politechnika Lubelska.
- Pater, Z., Gontarz, A., Tomczak, J. & Bulzak, T. (2015) Producing hollow drive shafts by rotary compression. Archives of Civil and Mechanical Engineering 15, 4, pp. 917– 924.
- Pater, Z. & Samołyk, G. (2013) Podstawy technologii obróbki plastycznej. Lublin: Politechnika Lubelska.
- Shen, J., Wang, B., Zhou, J., Huang, X. & Li, J. (2019) Numerical and experimental research on cross wedge rolling hollow shafts with a variable inner diameter. Archives of Civil and Mechanical Engineering 19, 4, pp. 1497–1510.
- Sun, C., Fu, P.-X., Liu, H.-W., Liu, H. & Du, N. (2018) Effect of Tempering Temperature on the Low Temperature Impact Toughness of 42CrMo4-V Steel. Metals – Open Access Metallurgy Journal 8 (4), 232, doi:10.3390/met8040232.
- Szala, M., Szafran, M., Macek, W., Marchenko, S. & Hejwowski, T. (2019) Abrasion Resistance of S235, S355, C45, AISI 304 and Hardox 500 Steels with Usage of Garnet, Corundum and Carborundum Abrasives. Advances in Science and Technology. Research Journal 13, 4, pp. 151–161.
- Szala, M., Winiarski, G., Wójcik, Ł. & Bulzak, T. (2020) Effect of Annealing Time and Temperature Parameters on the Microstructure, Hardness and Strain-Hardening Coefficients of 42CrMo4 Steel. Materials 13, 2022, doi:10.3390/ ma13092022.
- Tomków, J., Czupryński, A. & Fydrych, D. (2020) The Abrasive Wear Resistance of Coatings Manufactured on High-Strength Low-Alloy (HSLA) Offshore Steel in Wet Welding Conditions. Coatings 10(3), 219, doi:10.3390/coatings10030219.
- Wang, G.-C., Zhao, G.-Q., Huang, X.-H. & Jia Y.-X. (2002) Analysis and design of a new manufacturing process for a support shaft using the finite element method. Journal of Materials Processing Technology 121, 2–3, pp. 259–264.
- Winiarski, G., Bulzak, T., Wójcik, Ł. & Szala, M. (2019) Effect of Tool Kinematics on Tube Flanging by Extrusion with a Moving Sleeve. Advances in Science and Technology. Research Journal 13, 3, pp. 210–216.
- Winiarski, G., Bulzak, T., Wójcik, Ł. & Szala, M. (2020) Numerical Analysis of a Six Stage Forging Process for Producing Hollow Flanged Parts from Tubular Blanks. Advances in Science and Technology. Research Journal 14, 1, pp. 201–208.
- Winiarski, G. & Gontarz, A. (2017) Numerical and experimental study of producing two-step flanges by extrusion with a movable sleeve. Archives of Metallurgy and Materials 62, 2A, pp. 495–499.
- Winiarski, G., Gontarz, A. & Dziubińska, A. (2017) The influence of tool geometry on the course of flanges radial extrusion in hollow parts. Archives of Civil and Mechanical Engineering 17, 4, pp. 986–996.
- Winiarski, G., Gontarz, A. & Samołyk, G. (2019) Flange formation in aluminium alloy EN AW 6060 tubes by radial extrusion with the use of a limit ring. Archives of Civil and Mechanical Engineering 19, 4, pp. 1020–1028.
|