English Polski
Akademia Morska w Szczecinie

DSpace Home

DSpace/Manakin Repository

Show simple item record

Author Dąbrowski, Paweł S.
Affiliation Gdynia Maritime University, Department of Geodesy and Oceanography 19 Sedzickiego St., 81-347 Gdynia, Poland
E-mail p.dabrowski@wn.umg.edu.pl
Author Specht, Cezary
Affiliation Gdynia Maritime University, Department of Geodesy and Oceanography 19 Sedzickiego St., 81-347 Gdynia, Poland
E-mail c.specht@wn.umg.edu.pl
Author Koc, Władysław
Affiliation Gdańsk University of Technology, Faculty of Civil and Environmental Engineering 11/12 Narutowicza St., 80-233 Gdańsk, Poland
E-mail kocwl@pg.edu.pl
Author Wilk, Andrzej
Affiliation Gdańsk University of Technology, Faculty of Electrical and Control Engineering 11/12 Narutowicza St., 80-233 Gdańsk, Poland
E-mail andrzej.wilk@pg.edu.pl
Author Czaplewski, Krzysztof
Affiliation Gdynia Maritime University, Department of Geodesy and Oceanography 19 Sedzickiego St., 81-347 Gdynia, Poland
E-mail k.czaplewski@amw.gdynia.pl
Author Karwowski, Krzysztof
Affiliation Gdańsk University of Technology, Faculty of Electrical and Control Engineering 11/12 Narutowicza St., 80-233 Gdańsk, Poland
E-mail krzysztof.karwowski@pg.edu.pl
Author Specht, Mariusz
Affiliation Gdynia Maritime University, Department of Transport and Logistics 81-87 Morska St., 81-225 Gdynia, Poland
E-mail m.specht@wn.umg.edu.pl
Author Chrostowski, Piotr
Affiliation Gdańsk University of Technology, Faculty of Civil and Environmental Engineering 11/12 Narutowicza St., 80-233 Gdańsk, Poland
E-mail piotr.chrostowski@wilis.pg.gda.pl
Author Szmagliński, Jacek
Affiliation Gdańsk University of Technology, Faculty of Civil and Environmental Engineering 11/12 Narutowicza St., 80-233 Gdańsk, Poland
E-mail jacek.szmaglinski@pg.edu.pl
Author Grulkowski, Sławomir
Affiliation Gdańsk University of Technology, Faculty of Electrical and Control Engineering 11/12 Narutowicza St., 80-233 Gdańsk, Poland
E-mail slawi@pg.edu.pl
ISSN printed 1733-8670
URI https://repository.am.szczecin.pl/handle/123456789/2587
Abstract Determining the course of a railway track axis using satellite methods relies on ensuring the precise assembly of GNSS receivers in dedicated measuring devices. Depending on the number of receivers, solutions that are based on placing the apparatus directly above the railway track axis (as well as in eccentric positions) are used to indirectly obtain data to form the basis of the desired results. This publication describes the installation of five GNSS receivers on a mobile measuring platform as part of the InnoSatTrack project. The methodology and the procedure of the geodetic measurements required to obtain the geometrical configuration of the measuring apparatus, specified in the technical project, are presented. The publication presents the principles of total station measurement methods as well as the steps taken to achieve precise results from staking out. The process of acquiring the same configuration of the GNSS receivers, based on the geometry of the squares on the two measuring platforms that were used in the research, has been shown. The final determination of the position of the receivers did not exceed an error of 0.010 m with an average error of 0.003 m, despite the occurrence of mounting difficulties. The results have demonstrated the high credibility and effectiveness of the presented solution.
Pages 18-26
Publisher Scientific Journals Maritime University of Szczecin, Zeszyty Naukowe Akademia Morska w Szczecinie
Keywords BRIK
Keywords GNSS
Keywords railway measurements
Keywords railway track
Keywords railway track axis
Keywords staking out
Keywords electronic total station
Title Installation of GNSS receivers on a mobile railway platform – methodology and measurement aspects
References
  1. Akpinar, B. & Gulal, E. (2011) Multisensor railway track geometry surveying system. IEEE Transactions on Instrumentation and Measurement 61 (1), pp. 190–197.
  2. Arastounia, M. & Oude Elberink, S. (2016) Application of template matching for improving classification of urban railroad point clouds. Sensors 16 (12), 2112.
  3. Baran, L.W., Oszczak, S., Śledziński, J. & Specht, C. (2008) Wielofunkcyjny System precyzyjnego pozycjonowania satelitarnego ASG-EUPOS. Główny Urząd Geodezji i Kartografii, Warszawa. Avaliable from: www.asgeupos. pl/webpg/graph/dwnld/ASG-EUPOS_broszura_200806.pdf [Accessed: October 07, 2019].
  4. Chen, Q., Niu, X., Zhang, Q. & Cheng, Y. (2015) Railway track irregularity measuring by GNSS/INS integration. Navigation: Journal of The Institute of Navigation 62 (1), pp. 83–93.
  5. Chen, Q., Niu, X., Zuo, L., Zhang, T., Xiao, F., Liu, Y. & Liu, J. (2018) A railway track geometry measuring trolley system based on aided INS. Sensors 18 (2), 538.
  6. Gao, Z., Ge, M., Li, Y., Shen, W., Zhang, H. & Schuh, H. (2018) Railway irregularity measuring using Rauch–Tung– Striebel smoothed multi-sensors fusion system: quad-GNSS PPP, IMU, odometer, and track gauge. GPS Solutions 22 (2), 36.
  7. Gao, Z., Ge, M., Li, Y., Shen, W., Zhang, H. & Schuh, H. (2018) Railway irregularity measuring using Rauch–Tung– Striebel smoothed multi-sensors fusion system: quad-GNSS PPP, IMU, odometer, and track gauge. GPS Solutions 22 (2), 36.
  8. Heritage, G.L. & Large, A.R. (Eds) (2009) Laser scanning for the environmental sciences (pp. 21–34). Hoboken, New Jersey: Wiley-Blackwell.
  9. Hooijberg, M. (2008) Geometrical geodesy. Springer, Berlin.
  10. Jiang, Q., Wu, W., Jiang, M. & Li, Y. (2017a) A new filtering and smoothing algorithm for railway track surveying based on landmark and IMU/odometer. Sensors 17(6), 1438.
  11. Jiang, Q., Wu, W., Li, Y. & Jiang, M. (2017b) Millimeter scale track irregularity surveying based on ZUPT-aided INS with sub-decimeter scale landmarks. Sensors 17(9), 2083.
  12. Koc, W. & Chrostowski, P. (2014) Computer-aided design of railroad horizontal arc areas in adapting to satellite measurements. Journal of Transportation Engineering 140 (3), 04013017, doi: 10.1061/(ASCE)TE.1943-5436.0000643.
  13. Koc, W. & Specht, C. (2009) Wyniki pomiarów satelitarnych toru kolejowego. TTS Technika Transportu Szynowego 15, pp. 58–64.
  14. Koc, W. (2012) Design of rail-track geometric systems by satellite measurement. Journal of Transportation Engineering 138 (1), pp. 114–122, doi: 10.1061/(ASCE)TE.1943- 5436.0000303.
  15. Koc, W. (2016) The analytical design method of railway route’s main directions intersection area. Open Engineering 6 (1), doi: 10.1515/eng-2016-0001.
  16. Koc, W., Specht, C., Chrostowski, P. & Szmagliński, J. (2019) Analysis of the possibilities in railways shape assessing using GNSS mobile measurements. In: MATEC Web of Conferences (Vol. 262, p. 11004). EDP Sciences, doi: 10.1051/matecconf/201926211004.
  17. Koc, W., Specht, C., Jurkowska, A., Chrostowski, P., Nowak, A., Lewiński, L. & Bornowski, M. (2009) Określanie przebiegu trasy kolejowej na drodze pomiarów satelitarnych. Preccedings of Conference: II Konferencja Naukowo- Techniczna „Projektowanie, Budowa i Utrzymanie Infrastruktury w Transporcie Szynowym INFRASZYN”, Zakopane.
  18. Korn, G.A. & Korn, T.M. (2000) Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. Courier Corporation.
  19. Kreye, C., Eissfeller, B. & Ameres, G. (2004, September) Architectures of GNSS/INS integrations: Theoretical approach and practical tests. In: Symposium on Gyro Technology (pp. 14-0).
  20. Kurhan, M.B., Kurhan, D.M., Baidak, S.Y. & Khmelevska, N.P. (2018) Research of railway track parameters in the plan based on the different methods of survey. Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway Transport 2 (74), pp. 77–86.
  21. Li, Q., Chen, Z., Hu, Q. & Zhang, L. (2017) Laser-aided INS and odometer navigation system for subway track irregularity measurement. Journal of Surveying Engineering 143 (4), 04017014.
  22. Lou, Y., Zhang, T., Tang, J., Song, W., Zhang, Y. & Chen, L. (2018) A Fast Algorithm for Rail Extraction Using Mobile Laser Scanning Data. Remote Sensing 10 (12), 1998.
  23. Regulation (2012a) Regulation of the Council of Ministers of October 15, 2012 on the state system of spatial references (Dz.U. 2012 poz. 1247) (in Polish).
  24. Regulation (2012b) Regulation of the Minister of Administration and Digitization of February 14, 2012 regarding geodetic, gravimetric and magnetic control networks (Dz.U. 2012 poz. 352) (in Polish).
  25. Sánchez, A., Bravo, J.L. & González, A. (2016) Estimating the accuracy of track-surveying trolley measurements for railway maintenance planning. Journal of Surveying Engineering 143 (1), 05016008.
  26. Specht, C. & Koc, W. (2016) Mobile satellite measurements in designing and exploitation of rail roads. Transportation Research Procedia 14, pp. 625–634.
  27. Specht, C., Chrostowski, P. & Koc, W. (2016) Computer- aided evaluation of the railway track geometry on the basis of satellite measurements. Open Engineering 6, 1, pp. 125–134, doi: 10.1515/eng-2016-0017.
  28. Specht, C., Koc, W., Chrostowski, P. & Szmaglinski, J. (2019) Accuracy Assessment of Mobile Satellite Measurements Relation to the Geometrical Layout of Rail Tracks, Metrology and Measurement Systems (in Press), Gdansk, Index 330930, ISSN 0860-8229.
  29. Specht, C., Koc, W., Smolarek, L., Grządziela, A., Szmagliński, J. & Specht, M. (2014) 1399. Diagnostics of the tram track shape with the use of the global positioning satellite systems (GPS/Glonass) measurements with a 20 Hz frequency sampling. Journal of Vibroengineering 16 (6), pp. 3076–3085.
  30. Specht, C., Mania, M., Skóra, M. & Specht, M. (2015) Accuracy of the GPS Positioning System in the Context of Increasing the Number of Satellites in the Constellation. Polish Maritime Research 22 (2), pp. 9–14.
  31. Specht, C., Nowak, A., Koc, W. & Jurkowska, A. (2011) Application of the Polish Active Geodetic Network for railway track determination. In: A. Weintrit, T. Neumann (Eds) Transport Systems and Processes: Marine Navigation and Safety of Sea Transportation. Leiden: CRC Press, pp. 77–81.
  32. Specht, C., Specht, M. & Dąbrowski, P. (2017) Comparative Analysis of Active Geodetic Networks in Poland. 17th International Multidisciplinary Scientific GeoConference: SGEM: Surveying Geology & Mining Ecology Management 17, pp. 163–176.
  33. Wang, Y., Wang, P., Wang, X. & Liu, X. (2018) Position synchronization for track geometry inspection data via big-data fusion and incremental learning. Transportation Research Part C: Emerging Technologies 93, pp. 544–565.
  34. Wanic, A. (2007) Instrumentoznawstwo geodezyjne i elementy technik pomiarowych. Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego.
  35. Yoshimura, A. & Naganuma, Y. (2013) A new method to reconstruct the track geometry from versine data measured in the curved track using the Monte Carlo Particle Filter. In: 12th International Conference and Exhibition Railway Engineering.
ISSN on-line 2392-0378
Language English
Funding No data
Figures 6
Tables 2
DOI 10.17402/367
Published 2019-12-27
Accepted 2019-11-21
Recieved 2019-10-08


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search repository

Advanced Search

Browse

My Account

RSS Feeds