English Polish
Akademia Morska w Szczecinie

DSpace Home

DSpace/Manakin Repository

Show simple item record

Author Panasiuk, Katarzyna
Affiliation Gdynia Maritime University, Faculty of Marine Engineering, Department of Engineering Sciences 81-87 Morska St., 81-581 Gdynia, Poland
E-mail k.panasiuk@wm.am.gdynia.
Author Kyzioł, Lesław
Affiliation Gdynia Maritime University, Faculty of Marine Engineering, Department of Engineering Sciences 81-87 Morska St., 81-581 Gdynia, Poland
E-mail l.kyziol@wm.umg.edu.pl
Author Hajdukiewicz, Grzegorz
Affiliation Gdynia Maritime University, Faculty of Marine Engineering, Department of Engineering Sciences 81-87 Morska St., 81-581 Gdynia, Poland
E-mail g.hajdukiewicz@wm.am.gdynia.
ISSN printed 1733-8670
URI https://repository.am.szczecin.pl/handle/123456789/2515
Abstract Layered composites are materials that are widely used in industry due to their low manufacturing costs. They are used, among others, as a construction material for the construction of light aircraft, cars, wind turbine blades and the hulls of vessels. The universality of their use has contributed to the formation of a large amount of post-production and post-use waste from these composites. Layered composites, using recycled polyester and glass, or recycled composite waste, may be materials that could be used in the economy. The polyester-glass waste used in the composite was created by crushing and then grinding and sieving to obtain the appropriate granulation. Materials with a waste content of 0%, 10%, 20% and with granulation of this waste of ≤ 1.2 mm were made using the hand lamination method. Test specimens were prepared from the material plates that were obtained in accordance with the PN-EN ISO 179-1: 2010E standard (Plastics – Charpy Impact Assessment – Part 1: Non-instrumental impact test). Impact tests of samples were carried out according to the above-mentioned standards using a Zwick Roell RKP450 swinging hammer. Test bench instrumentation and software enabled the bending forces to be recorded, as well as the deflection of the samples for short time intervals and displacement, so a detailed force-deflection graph could be obtained. During the analysis, the results of the research were focused on describing the kinetics of the process where the samples were destroyed (fracture mechanics), this allowed for the initial determination of the material’s resistance to dynamic loads. The results obtained showed that the increase of the recycled content in the produced composite contributed to the lowering of the destructive force threshold in the impact tests, as well as the simultaneous increase of the plasticity of the material. The increase of the sample’s deflection with the occurrence of the maximum force resulted in the energy of the elastic state being increased (Ue).
Pages 73-78
Publisher Scientific Journals Maritime University of Szczecin, Zeszyty Naukowe Akademia Morska w Szczecinie
Keywords toughness
Keywords polyester-glass recyclate
Keywords composites
Keywords dynamic tests
Keywords cracking process
Keywords defects
Title Analysis of the cracking process of layered composites with polyester-glass recyclate using dynamic tests
References
  1. Asokan, P., Osmani, M. & Price, A.D.F. (2009) Assessing the recycling potential of glass fibre reinforced plastic waste in concrete and cement composites. Journal of Cleaner Production 17, 9, pp. 821–829.
  2. Barcikowski, M. & Królikowski, W. (2013) Effect of resin modification on the impact strength of glass-polyester composites. Polimery 58 (6), pp. 450–460.
  3. Bignozzi M.C., Saccani, A. & Sandrolini, F. (2000) New polymer mortars containing polymeric wastes. Part 1. Microstructure and mechanical properties. Composites Part A: Applied Science and Manufacturing 31, 2, pp. 97–106.
  4. Błędzki, A.K., Gorący, K. & Urbaniak, M. (2012) Możliwości recyklingu i utylizacji materiałów polimerowych i wyrobów kompozytowych. Polimery 9, pp. 620–626.
  5. Gawdzińska, K., Nagolska, D. & Kochmańska, A. (2013) Quality of the recovered metal matrix as a measure of the efficiency of the MMC recycling process. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 36 (108) z. 2, pp. 37–44.
  6. Gawdzińska, K., Szymański, P., Bryll, K., Pawłowska, P. & Pijanowski, M. (2017) Flexural strength of hybrid epoxy composites with carbon fiber. Composites Theory and Practice 17 (1), pp. 47–50.
  7. Gucma, M., Bryll, K., Gawdzińska, K., Przetakiewicz, W & Piesowic, E. (2015) Technology of single polymer polyester composites and proposals for their recycling. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 44 (116), pp. 14–18.
  8. Habaj, W. (2008) Technologia kompozytów polimerowych wzmacnianych krótkim włóknem aramidowym wykonanych metodą RTM. Problemy Techniki Uzbrojenia 37, 105, pp. 61–73.
  9. Hyla, I. (1989) Beitrag zum Schädigungs – und Bruchverhalten von faserverstärkten Verbndwerkstoffen. Hutnictwo 33.
  10. Hyla, I. & Lizurek, A. (2002) Zastosowanie badań dynamicznych do analizy mechanizmu pękania udarowego kompozytów warstwowych. Kompozyty (Composites) 2 (5), pp. 374–377.
  11. Kowalska, E., Wielgosz, Z. & Bartczak, T. (2002) Utylizacja odpadów laminatów poliestrowo-szklanych. Polimery 47, 2, pp. 110–116.
  12. Królikowski, W. (2012) Polimerowe kompozyty konstrukcyjne. Warszawa: PWN.
  13. Kwiatkowski, D. (2010) Badanie odporności na pękanie kompozytów PA6 z włóknem szklanym na podstawie współczynnika intensywność naprężeń. Kompozyty (Composites) 10 (4), pp. 344–347.
  14. Kwiatkowski, D. & Nabiałek, J. (2009) Badanie odporności kompozytów PP z talkiem na podstawie współczynnika intensywności naprężeń. Kompozyty (Composites) 9 (4), pp. 369–372.
  15. Kyzioł, L. (2018) Stress distribution in an anisotropic beam subjected to load. Journal of KONES 25, 2, pp. 207–214.
  16. Kyzioł, L., Panasiuk, K. & Hajdukiewicz, G. (2018) The influence of granulation and content of polyester-glass waste on properties of composites. Journal of KONES 25, 4, pp. 223–230.
  17. Kyzioł, L. & Szwabowicz, M.L. (2018) Toughness of Scots Pine: Polymethyl Methacrylate Composite. Polymer Composites 40, 2, pp. 811–822.
  18. Panasiuk, K. & Hajdukiewicz, G. (2017) Production of composites with added waste polyester-glass with their initial mechanical properties. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 52 (124), pp. 30–36.
  19. Panasiuk, K. & Hajdukiewicz, G. (2018) Influence of the content of the glass-polyster recycled additive on the properties of layered composites in dynamic tests. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 56 (128), pp. 36–40.
  20. Pickering, S. (2016) Recycling technologies for thermoset composite materials – current status. Composites Part A: Applied Science and Manufacturing 8, pp. 1206–1215.
  21. Rutecka, M., Kozioł, M. & Śleziona, J. (2005) Utilization of composite wastes as a filler of polymer matrix in composites. Kompozyty (Composites) 2, pp. 68–73 (in Polish).
  22. Rutecka, M., Śleziona, J. & Myalski, J. (2004) Estimation of possibility of using polyester-glass fiber recyclate in laminates production. Kompozyty (Composites) 9, pp. 56–60 (in Polish).
  23. Panasiuk, K. (2018) Analysis of technologies for producing composites with polyester-glass recyclate. Scientific Journal of Polish Naval Academy 3, pp. 63–73.
ISSN on-line 2392-0378
Language English
Funding No data
Figures 6
Tables 2
DOI 10.17402/328
Published 2019-01-16
Accepted 2019-02-26
Recieved 2019-01-08


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search repository

Advanced Search

Browse

My Account

RSS Feeds