
Scientific Journals 	 Zeszyty Naukowe
of the Maritime University of Szczecin	 Akademii Morskiej w Szczecinie

Zeszyty Naukowe Akademii Morskiej w Szczecinie 45 (117)	 23

2016, 45 (117), 23–28
ISSN 1733-8670 (Printed)	 Received: 	 31.08.2015
ISSN 2392-0378 (Online)	 Accepted: 	 10.12.2015
DOI: 10.17402/081	 Published:	 25.03.2016

A quick algorithm for planning a path for
a biomimetic autonomous underwater vehicle

Tomasz Praczyk
Polish Naval Academy
69 Śmidowicza St., 81-103 Gdynia, Poland, e-mail: t.praczyk@amw.gdynia.pl

Key words: path planning, underwater vehicle, autonomy, collision avoidance, automatic control, effective
planning algorithm

Abstract
Autonomous underwater vehicles are vehicles that are entirely or partly independent of human decisions. In or-
der to obtain operational independence, the vehicles have to be equipped with specialized software. The task
of the software is to move the vehicle along a trajectory while avoiding collisions. In its role of avoiding
obstacles, the vehicle may sometimes encounter situations in which it is very difficult to determine what
the next movement should be from an ad hoc perspective. When such a situation occurs, a planning component
of the vehicle software should be run with the task of charting a safe trajectory between nearby obstacles. This
paper presents a new path planning algorithm for a Biomimetic Autonomous Underwater Vehicle. The main
distinguishing feature of the algorithm is its high speed compared with such classic planning algorithms as A*.
In addition to presenting the algorithm, this paper also summarizes preliminary experiments intended to assess
the effectiveness of the proposed algorithm.

Introduction

Autonomous Underwater Vehicles (AUVs) are,
as the name implies, vehicles which have the ability
to operate autonomously, independently of human
input. This ability can be used on different levels
and in different situations, for example, as com-
pletely and continuously autonomous vehicle, or
as a remotely operated vehicle with the capability
of autonomously returning to its launch point when
communication with the operator is lost. Continuous
autonomous operation, as opposed to autonomy as
an emergency recovery option, requires each AUV
to be equipped with specialized software capable
of guiding the vehicle along a path fixed by the oper-
ator while avoiding collisions with obstacles along
the route.

Software with these abilities has been developed
for the Biomimetic Autonomous Underwater Vehicle
(BAUV) (Malec, Morawski & Zając, 2010; Szymak,
Malec & Morawski, 2010). This vehicle is being
constructed within the framework of project number

DOBR-BIO4/033/13015/2013, entitled Autonomous
underwater vehicles with silent undulating pro-
pulsion for underwater reconnaissance, financed
by the National Center of Research and Develop-
ment. The work was functionally divided into two
parts, a Low-Level Control System (LLCS) and
a High-Level Control System (HLCS). The LLCS
is responsible for executing commands provided
by the HLCS; its task is to implement the decisions
of the HLCS by means of BAUV propellers. In oth-
er words, LLCS transforms high-level decisions
of HLCS, like moving forward, to turning left, or
submerging to a depth of 15 meters, into low-level
decisions for its propellers. To do so requires the use
of both PID and fuzzy controllers. On the other hand,
the HLCS system is responsible for high-level deci-
sions regarding direction of movement, activating or
deactivating on/off on-board devices, diving depth,
and so on. Whereas the LLCS system performs tasks
which must be performed during both autonomous
or remotely controlled operation, the HLCS system
is used only for autonomous platforms.

Tomasz Praczyk

24	 Scientific Journals of the Maritime University of Szczecin 45 (117)

Although the HLCS can execute different
types of tasks, its primary responsibility is to steer
the vehicle along a fixed path while avoiding obsta-
cles encountered along the way. The path is defined
in terms of a set of predetermined waypoints cre-
ated either manually or automatically, with the aid
of a dedicated function incorporated into the operator
management software. After determining the path,
the BAUV comes under the control of the HLCS,
moving from one waypoint to another. When
the BAUV approaches an obstacle, the HLCS system
activates the collision avoidance procedure. After
the vehicle has reached a safe location, the HLCS
resumes its function of leading the BAUV to the next
waypoint. Unfortunately, preliminary experiments
with a prototype HLCS have shown that certain con-
ditions make it difficult for the HLCS to execute col-
lision-free manoeuvres. These situations occur when
the BAUV is surrounded on all sides by obstacles,
some of which are closer than others. One solution to
this problem is to use a path planning algorithm with
the task of determining a “good”, but not necessarily
“optimal”, collision-free path to the next waypoint.
When the HLCS copes well in a given situation, it
makes use of a standard collision avoidance algo-
rithm. But when the HLCS system determines that
the standard algorithm is incapable of charting a safe
course, it activates a special planning algorithm that
analyses additional data in search of a solution.

The planning algorithm described above is
the main topic of the current paper. It is described
in four sections: an introduction, a presentation
of the basic algorithm, a report on algorithm verifi-
cation experiments, and a concluding summary.

The algorithm

The algorithm incorporates a number of basic
assumptions. First, it should run as rapidly as pos-
sible and be computationally simple. The speed
requirement is due to the fact that the BAUV, when
running the algorithm, is in the course of completing
a mission that also has time requirements. The com-
putational simplicity of the algorithm is important
because of the limited capabilities of the on-board
computers. The BAUV’s computers are constrained
by the small amount of physical space to house them
as well as by the limited amount of electrical ener-
gy to power them. It is also necessary to remember
that the task of computers is not only to chart a path
for the BAUV, but also to control such additional
behaviours as sensor control, camera operation, pro-
cessing of sonar data, and so on. Second, there are

no requirements that the path generated by the algo-
rithm be rigorously “optimal”, as opposed to simply
being “good”. The main thing is that it is determined
quickly, and that it avoids collisions.

Third, the algorithm should work well at small
distances. Either the operator or the planning algo-
rithm, as a proxy for the operator, must be used to
plan the whole path for the vehicle. The algorithm is
based on information acquired from the sea charts,
and distances between waypoints are rather large.
The algorithm that deals with charting a path under
complex collision situations has the additional task
of determining the course from the current position
to the next waypoint generated by the global path
algorithm. Moreover, the fundamental responsibility
of the collision-avoidance path planning algorithm
(or the “local path algorithm”) is to direct the BAUV
to a position from which the next waypoint can be
reached by a straight line course. All of these consid-
erations imply that the collision-avoidance algorithm
must work well when dealing with smaller areas.

Fourth, the course must be laid out in a simple
virtual environment that makes use of data obtained
by the vessel’s sensors. These sensors are used to
form an environment map comprised of such simple
elements as spheres in space. The task of the plan-
ning algorithm thus becomes one of finding a path
which avoids all the spheres and leads the BAUV to
the next waypoint.

Finally, the planning algorithm should work in 2D
space, that is to say, in XY space. This means that all
paths should be paved at one depth. This assumption
results from imperfect sensors which provide only
limited data about the environment. Most of the time,
the BAUV moves at the same depth and, as a con-
sequence, has environmental information that is
almost entirely restricted to a single depth. Therefore
the planning algorithm must be able of gathering all
the environmental information it needs from sensors
operating at one depth.

All of the five assumptions presented above are
met by the planning algorithm depicted in Figure 1.
The algorithm is a “hill-climbing” algorithm (Gu,
1992; Rayward-Smith, Osman & Reeves, 1996;
Selman & Gomes, 2006), which stores the path
as a table of successive waypoints (wayPoints
table). Working in “i” iterations, the path is first
stored in the temporary table wayPointsTmp.
Then the path is modified (modifyPath()) and
evaluated (evaluatePath()). If the modifi-
cation generates a better path than the best exist-
ing path (or sometimes a path that is just as good),
the current best is replaced with the modified path;

A quick algorithm for planning a path for a biomimetic autonomous underwater vehicle

Zeszyty Naukowe Akademii Morskiej w Szczecinie 45 (117)	 25

otherwise, the modified path is deleted. Moreover,
when the modification repeatedly (more than P2
times) fails to produce a better path than the current
best, the parameters of the modification function are
changed (at P3) to increase the level of modification
in the next iterations.

The evaluation function (evaluatePath())
included in the path planning algorithm works accord-
ing to the implementation presented in Figure 2.

It usually distinguishes two situations, one in which
the path obtains an evaluation (or fitness) value equal
to zero, and the other being all paths with non-zero
evaluations. A fitness of zero is assigned to a path
in the following two circumstances:

1.	When any section between waypoints, the first
waypoint and the current position of BAUV,
or the last waypoint and the goal point of the
algorithm, is in an obstacle. That is to say

pathPlanning(C,D,I,positionBAUV,P1,P2,P3)
 threshodlModificationCourse = C;
 numberModificationsFailure = 0;
 numberModificationsAllFailures = 0;
 course = random value from range 0..359;

wayPoints[0] = getPoint(positionBAUV,D,course);//point is generated at distance D and at
 //course from current position of BAUV

 fitnessBest = evaluatePath(positionBAUV,wayPoints,D);
 repeat I times
 wayPointsTmp = wayPoints;//the path is stored in temporary path
 modification = modifyPath(threshodlModificationCourse,positionBAUV,D);//the path

//is modified – see further
 fitnessCurrent = evaluatePath(positionBAUV,waypoints,D);//the modified path is

//evaluated – see further
if((fitnessCurrent>fitnessBest and modification!=0)or(fitnessCurrent>=fitnessBest and
modification==0)or(fitnessCurrent>=fitnessBest and modification!=0 and numberModifica-
tionsAllFailures >= P1))

 fitnessBest = fitnessCurrent;
 threshodlModificationCourse = C;
 numberModificationsFailure = 0;
 numberModificationsAllFailures = 0;
 end if
 else
 wayPoints = wayPointsTmp;
 numberModificationsAllFailures++;
 if(modification==0)
 numberModificationsFailure++;

 if(numberModificationsFailure > P2)
 threshodlModificationCourse = threshodlModificationCourse + P3;
 numberModificationsFailure = 0;
 end if
 end else
 end repeat
 end function

evaluatePath(positionBAUV,wayPoints,D)
 repeat i=0, i<numberOfWaypoints
 if(i==0 and !isInObstacles(positionBAUV) and

isSectionInObstacles(positionBAUV,wayPoints[i]))
 return 0;
 else
 if(i==0 and isInObstacles(positionBAUV) and isInObstacles(wayPoints[i]))
 return 0;
 else
 if(i==numberOfWaypoints-1 and isSectionInObstacles(wayPoints[i],pointGoal))
 return 0;
 else
 if(isSectionInObstacles(waypoints[i-1],wayPoints[i]))
 return 0;
 end repeat

 distance = numberOfWaypoints*odlegloscPomiedzyWayPointami

+getDistanceBetweenPoints(wayPoints[numberOfWaypoints-1],pointGoal);

 return 1/distance;
 end function

Figure 1. The planning algorithm

Figure 2. Evaluation function

Tomasz Praczyk

26	 Scientific Journals of the Maritime University of Szczecin 45 (117)

whenever at least one point of the path lies
inside a spherical obstacle.

2.	When the current position of the BAUV is
inside an obstacle, and any waypoint is also
inside an obstacle.

Otherwise, the path gets is assigned a fitness that
is inversely proportional to the length of the path.

The modification function (modifyPath())
which tries to produce better paths over a number

of iterations is presented in Figure 3. It performs
the following operations on a path:

1.	Modification of a randomly selected waypoint
(case 0 – in Figure 3) such that its location is
moved to another point. The magnitude of the
movement depends on the value of the param-
eter threshodlModificationCourse.

2.	Addition of a new waypoint at the end of the
path located a distance D from the previous

modifyPath(threshodlModificationCourse,positionBAUV,D)
 operation = random value from range 0..2
 switch(operation)
 case 0://modification of selected waypoint
 numberOfPoint = 0;
 if(numberOfWaypoints > 1)
 numberOfPoint = random value from range 0..numberOfWaypoints-1;
 courseDelta = random value from range 0..threshodlModificationCourse-1;
 if(numberOfPoint==0)
 course = getCourse(positionBAUV,wayPoints[numberOfPoint]);
 wayPoints[numberOfPoint] = getPoint(positionBAUV,D,course+courseDelta);
 end if
 else
 course = getCourse(wayPoints[numberOfPoint-1],wayPoints[numberOfPoint]);
 wayPoints[numberOfPoint]=getPoint(wayPoints[numberOfPoint-1],D,course+courseDelta);
 end if
 end case
 case 1://addition a new waypoint
 if(numberOfWaypoints < maxNumberOfWayPoints)
 course = random value from range 0..359;
 wayPointy[numberOfWaypoints] = getPoint(wayPoints[numberOfPoint-1],D,course);
 numberOfWaypoints++;
 end if
 end case
 case 2://removal of last waypoint
 if(numberOfWaypoints > 1)
 numberOfWaypoints--;
 end case
 end switch
 return operation;
 end function

Figure 3. Modification function

a) b)

c) d)

Figure 4. Example paths generated by the planning algorithm after 50 (a), 100 (b, c), and 200 (d) iterations

A quick algorithm for planning a path for a biomimetic autonomous underwater vehicle

Zeszyty Naukowe Akademii Morskiej w Szczecinie 45 (117)	 27

waypoint, and on a randomly selected course
from the previous waypoint.

3.	Removal of the last waypoint from the path.
The order of these operations is selected at

random.

Experiments

Experiments were conducted to verify the intend-
ed performance of the algorithm as defined in the pre-
vious section. In the experiments, the algorithm was

Figure 5. Example paths generated by the planning algorithm after 400 (a, b), 600 (c–h), and 1000 (i) iterations

a) b)

c) d)

e)
f)

g) h)

i)

Tomasz Praczyk

28	 Scientific Journals of the Maritime University of Szczecin 45 (117)

tasked with finding the path for the BAUV under dif-
ferent testing scenarios. The tests simulated progres-
sively more difficult path planning scenarios. First,
the BAUV was surrounded by few spherical obsta-
cles, and then more obstacles were added to make
the task of the algorithm increasingly more chal-
lenging. In the experiments, the following values
of the algorithm parameters were used: C = 20 deg,
D = 10 m, I = 100,1000, P1 = 4, P2 = 5, P3 = 20.
Results of the experiments are presented in Figures
4 and 5.

In general, the results showed that the algorithm
is able to find even barely visible paths between
obstacles quite rapidly. After only 50 iterations (i =
50), the algorithm appeared to be able to generated
collision-free paths. However, about half of the paths
produced, in this case, led through obstacles.

Increasing the value of i to 100, 200 and 400 iter-
ations improved the situation, but did not entirely
eliminate it; even with 400 iterations, some paths
were generated that led to collisions with spherical
obstacles. Indeed, it was not until i was set to 600
iterations that all paths produced by the algorithm
were collision-free. Moreover, when i was set to
600, about 80% of the paths produced by the algo-
rithm were very similar even though all modifica-
tion operations were subjected to random modifi-
cations. Figures 5a, 5c, and 5g show the paths that
were produced the most frequently. Figure 5i is also
very interesting because it illustrates the path found
by the algorithm for i = 1000, the path which goes
through a barely visible hole between obstacles. As
was the case for other highly iterated paths, the path
depicted in Figure 5i was seen quite frequently, but
only when i was set to 1000.

Conclusions

This paper presents a quick, hill-climb algorithm
for planning a path for the BAUV. The algorithm
is run on-board the BAUV board during vehicle
operation, and is tasked with setting the course for
the vehicle when the standard control strategies fail
to indicate a safe direction of movement.

Experiments were conducted to evaluate the algo-
rithm proposed here. In general, these experiments
showed that the algorithm produces collision-free
paths so long as a minimum of 600 iterations were
performed. At 1000 iterations, the algorithm found
paths that approximated optimal paths.

Acknowledgments

The paper is supported by the project No. DOBR-
-BIO4/033/13015/2013, entitled “Autonomous
underwater vehicles with silent undulating propul-
sion for underwater reconnaissance” financed by
National Centre of Research and Development.

References

1.	Gu, J. (1992) Efficient local search for very large-scale sat-
isfiability problems. Sigart Bulletin 3 (1). pp. 8–12.

2.	Malec, M., Morawski, M. & Zając, J. (2010) Fish-like
swimming prototype of mobile underwater robot. Journal
of Automation, Mobile Robotics & Intelligent Systems 4 (3).
pp. 25–30.

3.	Rayward-Smith, V.J., Osman, I.H. & Reeves, C.R. (eds)
(1996) Modern Heuristic Search Methods. London, UK:
John Wiley.

4.	Selman, B. & Gomes, C.P. (2006) Hill-climbing Search. En-
cyclopedia of Cognitive Science.

5.	Szymak, P., Malec, M. & Morawski, M. (2010) Directions
of development of underwater vehicle with undulating pro-
pulsion. Polish Journal of Environmental Studies 19 (3).
Hard Publishing Company, Olsztyn. pp. 107–110.

