English Polski
Akademia Morska w Szczecinie

DSpace Home

DSpace/Manakin Repository

Show simple item record

Author Łącki, Mirosław
Affiliation Gdynia Maritime University
E-mail lacki@am.gdynia.pl
ISSN printed 1733-8670
URI http://repository.am.szczecin.pl/handle/123456789/2478
Abstract The goal of research presented in this article is to check if a neuroevolutionary method with direct encoding is able to be a part of autopilot of the vessel. One of the important tasks of vessel autopilots is to keep a course as straight as possible or to bring the ship back on the route as efficiently as possible. In this paper, the adaptive neuroevolutionary autopilot is described and tested on a simulation model of a ferry. Neuroevolution is a combination of two different but related fields of artificial machine learning: evolution and neural networks. The combined method is very flexible and can be applied to other ship control tasks. The results of computer simulation of the neuroevolutionary course-keeping system have been included.
Pages 70–74
Publisher Scientific Journals Maritime University of Szczecin, Zeszyty Naukowe Akademia Morska w Szczecinie
Keywords artificial intelligence
Keywords autopilot
Keywords algorithm
Keywords ship course-keeping
Keywords neuroevolution
Keywords ship maneuvering
Title Ship course-keeping with neuroevolutionary algorithms
  1. Bagnell, D. & Schneider, J. (2001) Autonomous helicopter control using reinforcement learning policy search methods. International Conference on Robotics and Automation.
  2. Collinder, P.A. (1955) A History of Marine Navigation. St. Martin’s Press.
  3. Haasdijk, E., Rusu, A.A. & Eiben, A.E. (2010) HyperNEAT for Locomotion Control in Modular Robots. 9th International Conference on Evolvable Systems, 2010.
  4. Kenneth, S., Nate, K., Rini, S. & Risto, M. (2005) Neuroevolution of an automobile crash warning system. Proceedings of the 2005 conference on Genetic and evolutionary computation, Washington DC, USA.
  5. Łącki, M. (2007) Machine Learning Algorithms in Decision Making Support in Ship Handling. Presented at the TST, Katowice- Ustroń, 2007.
  6. Łącki, M. (2009) Ewolucyjne sieci NEAT w sterowaniu statkiem. In Inżynieria Wiedzy i Systemy Ekspertowe. Warszawa: Akademicka Oficyna Wydawnicza EXIT, pp. 535–544.
  7. Larkin, D., Kinane, A. & O’Connor, N. (2006) Towards hardware acceleration of neuroevolution for multimedia processing applications on mobile devices. Proceedings of the 13th international conference on Neural information processing – Volume Part III, Hong Kong, China.
  8. Lee, S., Yosinski, J., Glette, K., Lipson, H. & Clune, J. (2013) Evolving gaits for physical robots with the HyperNEAT generative encoding: the benefits of simulation. In: Esparcia-Alcázar A.I. (eds) Applications of Evolutionary Computation. EvoApplications 2013. Lecture Notes in Computer Science, vol 7835. Springer, Berlin, Heidelberg.
  9. maritimbild (2010) VECKANS MARITIMBILD vecka 44 2010 [Online]. Available from: http://maritimbild.com/ AVECKANS_BILD_FILER/VECKANSBILD_44_2010. htm [Accessed: April 24, 2018]
  10. Nowak, A., Praczyk, T. & Szymak, P. (2008) Multi-agent system of autonomous underwater vehicles – preliminary report. Zeszyty Naukowe Akademii Marynarki Wojennej 4, pp. 99–108.
  11. Stanley, K.O. & Risto, M. (2002) Efficient Reinforcement Learning Through Evolving Neural Network Topologies. Proceedings of the Genetic and Evolutionary Computation Conference.
  12. Stanley, K.O., Bryant, B.D. & Risto, M. (2005) Real-time neuroevolution in the NERO video game. IEEE Transactions on Evolutionary Computation 9, 6, pp. 653–668.
  13. Tomera, M. (2010) Nonlinear controller design of a ship autopilot. International Journal of Applied Mathematics and Computer Science 20, 2, pp. 271–280.
  14. Zwierzewicz, Z. & Borkowski, P. (2006) Tracking System Nonlinear Control Synthesis Under a Lack of Object Dynamical Model. Zeszyty Naukowe Akademii Morskiej w Szczecinie 11 (83), pp. 413–424.
ISSN on-line 2392-0378
Language English
Funding No data
Figures 6
Tables 1
DOI 10.17402/287
Published 2018-06-27
Accepted 2018-02-24
Recieved 2017-10-24

Files in this item

This item appears in the following Collection(s)

Show simple item record

Search repository

Advanced Search


My Account

RSS Feeds